Search results for "DNA Methylation"

showing 10 items of 392 documents

Analysis of salivary detection of P16INK4A and RASSF1A promoter gene methylation and its association with oral squamous cell carcinoma in a Colombian…

2019

Background Epigenetic factors play a fundamental role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). This study evaluated if salivary detection of P16INK4A/RASSF1A gene promoter methylation might be linked to the clinical/histological features of OSCC in a Colombian population. Material and Methods Methylation-specific polymerase chain reaction (MSP-PCR) was used to detect the methylation frequency of P16INK4A/RASSF1A genes in DNA obtained from whole saliva collected of 40 healthy controls (HC) and 43 OSCC patients. Determination of the clinical performance of MSP-PCR assay was based on standard algorithms derived from two-way contingency table analysis. The association of …

010407 polymersSalivaPopulationBiology01 natural scienceslaw.inventionlaw0502 economics and businessEpigeneticseducationneoplasmsGeneral DentistryGenePolymerase chain reactioneducation.field_of_studyOral Medicine and PathologyResearch05 social sciencesPromoterMethylation:CIENCIAS MÉDICAS [UNESCO]0104 chemical sciencesstomatognathic diseasesUNESCO::CIENCIAS MÉDICASDNA methylationCancer research050211 marketingJournal of Clinical and Experimental Dentistry
researchProduct

Effects of acclimation time and epigenetic mechanisms on growth of Neurospora in fluctuating environments

2017

AbstractReaction norms or tolerance curves have often been used to predict how organisms deal with fluctuating environments. A potential drawback is that reaction norms measured in different constant environments may not capture all aspects of organismal responses to fluctuating environments. We examined growth of the filamentous fungusNeurospora crassain fluctuating temperatures and tested if growth in fluctuating temperatures can be explained simply by growth in different constant temperatures or if more complex models are needed. In addition, as previous studies on fluctuating environments have revealed that past temperatures that organisms have experienced can affect their response to c…

0106 biological sciences0301 basic medicineAcclimatizationMutantEnvironmentMethylation010603 evolutionary biology01 natural sciencesAcclimatizationNeurosporaArticleEpigenesis GeneticNeurospora crassaHistones03 medical and health sciencesGeneticsEpigeneticsGenetics (clinical)030304 developmental biology0303 health sciencesbiologyCell CyclefungiTemperatureAcetylationDNA MethylationModels Theoreticalbiology.organism_classificationFilamentous fungusNeurospora030104 developmental biologyRNA Interference PathwayH3k4 methylationDNA methylationBiophysicsGene-Environment InteractionRNA Interference
researchProduct

Ecological plant epigenetics: Evidence from model and non-model species, and the way forward

2017

Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute…

0106 biological sciences0301 basic medicineEPIGENOMIC DIVERSITY[SDV]Life Sciences [q-bio]Species distributionINDIVIDUAL VARIATIONPhenotypic plasticity01 natural sciencesGenomephenotypic plasticityEpigenesis GeneticDNA METHYLATION VARIATIONComputingMilieux_MISCELLANEOUS0303 health sciencesEcologyEcologybioinformatiikkagenomiikkaGenomicsPlantsBioinformatics; ecological epigenetics; genomics; phenotypic plasticity; response to environment; Ecology Evolution Behavior and Systematics[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]HabitatepigenetiikkainternationalPHYSCOMITRELLA-PATENSresponse to environmentPERENNIAL HERBkasviekologiaEcological epigeneticsSEQUENCING DATAEvolutionBioinformaticsEcology (disciplines)GenomicsBiology010603 evolutionary biology[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesPolyploidBehavior and SystematicskasvitEpigeneticsEcosystemEcology Evolution Behavior and Systematics030304 developmental biologyHERB HELLEBORUS-FOETIDUSPhenotypic plasticityBioinformatics ; Ecological Epigenetics ; Genomics ; Phenotypic Plasticity ; Response To EnvironmentAmbientaleResponse to environmentDNA Methylation15. Life on landEcological realismPlant ecology030104 developmental biologyARABIDOPSIS-THALIANABioinformatics ecological epigenetics genomics phenotypic plasticity response to environmentAdaptation[SDE.BE]Environmental Sciences/Biodiversity and EcologyNATURAL-POPULATIONS
researchProduct

Adaptive Evolution and Epigenetics

2023

Epigenetic changes, such as DNA methylation and certain histone modifications, can be inherited but in many cases they do not follow Mendelian inheritance patterns and their stability appears to be lower than for changes in DNA sequence. Adaptive evolution by natural selection requires that differences among individuals are heritable to some degree. Epigenetic changes can be incorporated into evolutionary theory, and given that properties of epigenetic variation are distinct from genetic variation, spontaneous epigenetic changes can affect evolutionary dynamics in interesting ways. In this chapter, I review the properties of epigenetic variation and how they relate to the main parameters of…

0106 biological sciences0301 basic medicineGeneticseducation.field_of_studyNatural selectionPopulationBiology010603 evolutionary biology01 natural sciences03 medical and health sciencessymbols.namesake030104 developmental biologyEvolutionary biologyGenetic variationDNA methylationMendelian inheritancesymbolssense organsEpigeneticsAdaptationEvolutionary dynamicseducation
researchProduct

Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes)

2019

Introduction: In plants, the multicopy genes encoding ribosomal RNA (rDNA) typically exhibit heterochromatic features and high level of DNA methylation. Here, we explored rDNA methylation in early diverging land plants from Bryophyta (15 species, 14 families) and Marchantiophyta (4 species, 4 families). DNA methylation was investigated by methylation-sensitive Southern blot hybridization in all species. We also carried out whole genomic bisulfite sequencing in Polytrichum formosum (Polytrichaceae) and Dicranum scoparium (Dicranaceae) and used available model plant methyloms (Physcomitrella patents and Marchantia polymorpha) to determine rDNA unit-wide methylation patterns. Chromatin structu…

0106 biological sciences0301 basic medicineHeterochromatinBisulfite sequencingrDNAPlant ScienceBiologygenome evolutionlcsh:Plant culture01 natural sciences03 medical and health sciencesMarchantia polymorphabryophyteslcsh:SB1-1110EpigeneticsOriginal Research2. Zero hungerGametophyteGeneticsepigeneticshistone markscytosine methylationMethylation15. Life on landRibosomal RNAbiology.organism_classification030104 developmental biologyDNA methylation010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Induction of radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in dna methylation/hydroxymethylation and differen…

2020

Based on the hypothesis that embryo development is a crucial stage for the formation of stable epigenetic marks that could modulate the behaviour of the resulting plants, in this study, radiata pine somatic embryogenesis was induced at high temperatures (23 &deg

0106 biological sciences0301 basic medicineanimal structuresSomatic embryogenesisSomatic cellheat shock proteinPlant Scienceepigenetics; 5-hydroxymethylcytosine; 5-methylcytosine; heat; heat shock protein; memory; Pinus radiata; priming; somatic embryo; somatic plantBiology01 natural sciencesArticleTranscriptomememory03 medical and health sciencessomatic embryoMemorylcsh:BotanyHeat shock proteinEpigenetics5-hydroxymethylcytosine5-methylcytosineprimingEcology Evolution Behavior and SystematicsPinus radiataHeat shock proteinEcologyepigeneticsEmbryogenesisfungiSomatic embryofood and beveragesMethylationHeat<i>Pinus radiata</i>lcsh:QK1-989Cell biologySomatic plant030104 developmental biologysomatic plantPrimingDNA methylationEpigeneticsheat010606 plant biology & botany
researchProduct

Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas

2017

Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the …

0106 biological sciences0301 basic medicinehiilidioksidiEpigenomicsAdaptation Biological01 natural sciencestolerance (physical)Epigenesis GeneticEpigenomicssietokyky2. Zero hungerGeneticsExperimental evolutionepigeneettinen periytyminenSalt Tolerancegreen algaeAdaptation PhysiologicalHistoneDNA methylationepigenetic inheritancephosphate starvationBiologyEnvironment010603 evolutionary biologysuolapitoisuus03 medical and health sciencesviherlevätGenetic variationGeneticsEpigeneticssalt contentexperimental evolutionravinnepitoisuusMolecular BiologyGeneEcology Evolution Behavior and Systematicssalt tolerancefosfaatitta1183ChlamydomonasGenetic Variationadaptive walkcarbon dioxideDNA Methylation030104 developmental biologyepigenetic mutationMutationbiology.proteinta1181methylationAdaptationDirected Molecular EvolutionChlamydomonas reinhardtii
researchProduct

Epigenetic control of phenotypic plasticity in a filamentous fungus Neurospora crassa

2016

AbstractPhenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is an ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood in most organisms. While modifications to DNA and histone proteins have been implicated as likely candidates for generating and regulating phenotypic plasticity, specific details of each modification and its mode of operation have remained largely unknown. In this study, we investigated how e…

0106 biological sciencesGenetics0303 health sciencesPhenotypic plasticitybiologyContext (language use)biology.organism_classification01 natural sciencesNeurospora crassa03 medical and health sciencesHistoneHistone methylationDNA methylationbiology.proteinEpigeneticsGene030304 developmental biology010606 plant biology & botany
researchProduct

Viral fitness determines the magnitude of transcriptomic and epigenomic reprograming of defense responses in plants

2020

Although epigenetic factors may influence the expression of defense genes in plants, their role in antiviral responses and the impact of viral adaptation and evolution in shaping these interactions are still poorly explored. We used two isolates of turnip mosaic potyvirus with varying degrees of adaptation to Arabidopsis thaliana to address these issues. One of the isolates was experimentally evolved in the plant and presented increased load and virulence relative to the ancestral isolate. The magnitude of the transcriptomic responses was larger for the evolved isolate and indicated a role of innate immunity systems triggered by molecular patterns and effectors in the infection process. Sev…

0106 biological sciencesPotyvirusAdaptation BiologicalArabidopsisTurnip mosaic virus01 natural sciencesEpigenesis Genetic03 medical and health sciencesEpigenomeBiotic stressGeneticsPlant–virus interactionTurnip mosaic virusEpigeneticsMolecular BiologyGeneRNA-Directed DNA MethylationEcology Evolution Behavior and Systematics030304 developmental biologyEpigenomicsGenetics0303 health sciencesbiologyRNA-directed DNA methylationsystems biologyEpigenomevirus adaptationDNA Methylationbiology.organism_classificationBiological EvolutionRNA silencingExperimental evolutionHost-Pathogen InteractionsDNA methylationMethylomeGenetic FitnessTranscriptome010606 plant biology & botany
researchProduct

Engineering of a DNA Polymerase for Direct m6A Sequencing

2017

Methods for the detection of RNA modifications are of fundamental importance for advancing epitranscriptomics. N6-methyladenosine (m6A) is the most abundant RNA modification in mammalian mRNA and is involved in the regulation of gene expression. Current detection techniques are laborious and rely on antibody-based enrichment of m6A-containing RNA prior to sequencing, since m6A modifications are generally "erased" during reverse transcription (RT). To overcome the drawbacks associated with indirect detection, we aimed to generate novel DNA polymerase variants for direct m6A sequencing. Therefore, we developed a screen to evolve an RT-active KlenTaq DNA polymerase variant that sets a mark for…

0301 basic medicineAdenosineRNA-dependent RNA polymeraseDNA-Directed DNA Polymerase010402 general chemistryProtein Engineering01 natural sciencesCatalysis03 medical and health sciencesDNA polymerasesSequencing by hybridization[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYRNA polymerase IRNA MessengerPolymerasebiologyOligonucleotideN6-methyladenosineReverse Transcriptase Polymerase Chain ReactionCommunicationMultiple displacement amplificationHigh-Throughput Nucleotide Sequencing[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral ChemistryDNA MethylationRNA modificationMolecular biologyReverse transcriptaseCommunications0104 chemical sciencesSequencing by ligationenzyme engineering030104 developmental biologyComputingMethodologies_PATTERNRECOGNITIONddc:540biology.proteinepitranscriptomicsRNA Methylation
researchProduct